> DFC@ 2'bjbjFF .2,,
,$+2 bdddddd$Rgv](((FFF(bF(bFFF&yEe>vFb0+FFF((F((((($<
TAP 322- 3: Grating calculations
These questions give you practice in using the grating formula n l = d sin qn.
A grating is labelled '500 lines per mm'.
1. Calculate the spacing of the slits in the grating.
2. Monochromatic light is aimed straight at the grating and is found to give a first-order maximum at 15. Calculate the wavelength of the light source.
3. Calculate the position of the first-order maximum when red light of wavelength
730 nm is shone directly at the grating.
4. The longest visible wavelength is that of red light with l = 750 nm. The shortest visible wavelength is violet where l = 400nm. Use this information to calculate the width of the angle into which the first-order spectrum is spread out when white light is shone onto the grating.
A grating is illuminated with a parallel beam of light of wavelength 550 nm. The first-order maximum is in a direction making an angle of 20 with the straight-through direction.
5. Calculate the spacing of the grating slits.
6. What would be the angle of the first-order maximum if a grating of slit spacing of
2.5 10 6 m were used with the same light source?
7. Calculate the wavelength of light that would give a second-order maximum at q = 32 with a grating of slit spacing 2.5 10 6 m.
Hints
1. What must the gap be between the centre of each line in order to fit 500 lines into
1 mm? Remember to express your answer in metres.
2. This is about the first-order minimum so use the formula nl = d sin q with n = 1.
3. Rearrange the formula nl = d sin q to make sin q the subject. Remember to take the arcB
z|n
^`fj~8:>F*,~ϿhchcCJH*aJUhchcCJOJQJaJhchcCJhchcCJEH
aJhcCJaJhchc6CJEH]aJ hchcCJOJQJ^JaJhchc6CJ]aJhchcCJaJhchc4BD8 p
q
r
s
t
0^`0gdc`gdcgdcgdc2'
'`bdfhjrtvxz|~:gdc0^`0gdc`gdcgdc:HZ & "
"D"""#0#D#n#v####$$`gdcgdc0^`0gdcgdc^gdcsin (or sin 1) to give an answer in degrees.
4. Use the same method as question 3 to obtain the position of first-order maxima for red and violet light. The dispersion is simply the angle of maximum of red light minus the angle of maximum of violet light.
Practical advice
A set of simple practice questions, to build confidence.
Social and human context
These questions introduce the idea of interference gratings used to obtain spectra. This has been extremely important in the development of modern astronomy.
Answers and worked solutions
1. Number of slits per mm = 500. Therefore, slit spacing = 1 / 500 = 0.002 mm =
2 x 10 6 m.
2.
EMBED Equation.3
Therefore
EMBED Equation.3
3.
EMBED Equation.3
Therefore
EMBED Equation.3
from which q = 21.
4.
EMBED Equation.3
For red light:
EMBED Equation.3
angle qr = 22.
For violet light:
sin qv = / d = 4.0 x 10-7 m / 2 x 10-6 m = 0.20
angle qv = 12. The difference in angle is 10.
5.
EMBED Equation.3
6.
EMBED Equation.3
Thus
EMBED Equation.3
7.
EMBED Equation.3
Thus
EMBED Equation.3
External reference
This activity is taken from Advancing Physics chapter 6, 200S
~ &
"D"""""##(#*#.#D#F#f#h#j#l#v#x#########xg j,F
hchcCJUaJjhchcCJUaJ j-F
hchcCJUaJj0hchcCJUaJ j.F
hchcCJUaJ j/F
hchcCJUaJjhchcCJUaJhchcCJH*aJhchcCJhcCJaJhchcCJaJ######$$$$0$2$4$6$V$X$x$z$|$~$$$$$$$$$$$$%%6%8%:%<%>%D%F%%%%%%ֶ֖{{oo{hchcCJH*aJhchcCJH*aJj8hchcCJUaJ j*F
hchcCJUaJj! hchcCJUaJ j+F
hchcCJUaJhchcCJOJQJaJhchcCJaJjhchcCJUaJjhchcCJUaJ+$8$V$$$$*%%%%%%%"&*&T&^&&&&&.'0'2'gdcgdc`gdc%%%%%%%%%%%%&&& &*&,&L&N&P&R&^&`&&&&&ƵƕufUFjThchcCJUaJ j$F
hchcCJUaJj>hchcCJUaJ j%F
hchcCJUaJj9hchcCJUaJ j&F
hchcCJUaJjhchcCJUaJ j'F
hchcCJUaJhchcCJaJjhchcCJUaJj
hchcCJUaJ j(F
hchcCJUaJ&&&2'hchcCJhchcCJaJ,1h. A!"#$%0Dd
'+0
#A2"cߍ./=MD`!"cߍ./=M@NxuRJP=k$š8h: q$uZmwFJW@t&DMxw9`U PXyx9*F(B0T߶^˭0ڰQDh22z4,sc>SAqtT/1@F[9yzn42\<;ڣQִV'Q4
0Vǋ
(|?!E㧝o\JNpb g~w_O/[?߿GMیJt%սW$-_GyiTr6[@Jׂ^Ơkϲ#os-3[
uϏDd
S0
#A2WQ&{xt7t`!WQ&{xt7 *XJxuNAg9$ R$ PY1&`JV`aaa}ԖB_Hٻ]9wvv?%(/BRQBP˲x"1g.ME6(+B4IQmteag3_qOVtքXu/*1fC!YhU5^mvc"ham2Z5ꩊL6cT
l ~\]P|c>#u 9%99+yLgEՆ`V8BZ@. @wĪ}G0X-5rneoԭ4kim"uζԹ<篺tXLGtB;A;Ɋ߽ys\34j9=O((uJtg=Sx=2Dd
+0
#A2Dd;
c_`!Dd;
c_̎ePxcdd``vgd``baV d,FYzP1C&,7\F! KA?Hf5rC0&dT20]?c&,``abPp,L9N]y[~//Xr@@ڈˁUga3R!6(f6M_LDw9#O4!2}2!%7cn(P 27)?h`Ǫ-/IN&4q
hl 0y{I)$5֑gSb=͏ )!3viHU6w3q/:A2˞X"mQ'#d}.o}V\+u2xsK̛.M\P xS_?9_j
aiY~ϟ{pBDt˵re+ y|O0bDd
k0
#A
2)MV1KM`!MV1KM L"xuK@]bb
EZ䠋.qV[P*N.,GK]hwɝm G'}_#`(u@!xaPQBPuyda]l\IkJdEZ ĸ¢W6j7
[tqk.iΛsBdIX7dB
3?/\ 4T=bdbR
,.Ie(Lcg
(c^Dd
0
#A2VǾ 8W)Rg`!_VǾ 8W)R@
-x}MhQgn6ٗ`OuD/BՓVl!sY)B)[nkx6&nyVH)
e=&jTkgTT\GntȓnV?\S})~eYy i%vEd^c<4gHw#7Y>xO 5IILB01/6筮jx!́o̻5x(hko5}ͿOsx)~]PRAq
c$j٬G/W&7ke{tL[uB
s5sƄ֧K]>cCgl1ƲiC.S˧0OOA?Ǉ# {{u~h1c?@ABERoot Entry FOEeGData
c1Table(WordDocument.2SummaryInformation(3DocumentSummaryInformation8;CompObjj
FMicrosoft Word Document
MSWordDocWord.Document.89q