The Young modulus is often regarded as the quintessential material property, and students can learn to measure it. It is a measure of the stiffness of a material; however, in practice, other properties of materials, scientists and engineers are often interested in, such as yield stress, have more influence on the selection of materials for a particular purpose.
Summary
Discussion: Defining the Young modulus
A typical value of k might be 60 N m^{1}. What does this mean? (60 N will stretch the sample 1 m.) What would happen in practice if you did stretch a sample by 1m? (It will probably snap!)
A measure of stiffness that is independent of the particular sample of a substance is the Young modulus E.
Recall other examples you have already met of ‘sample independent’ properties that only depend upon the substance itself:
We need to ‘correct’ k for sample shape and size (i.e. length and surface area).
Note the quantities, symbols and units used:
Quantity  Definition  Symbol  Units 
Stress  tension/area = F / A  s (sigma)  N m^{2} = Pa 
Strain  extension per original length = Δ x / x  e (epsilon)  no units (because it’s a ratio of two lengths) 
Young Modulus  stress/strain  E  N m^{2} = Pa 
Strains can be quoted in several ways: as a %, or decimal. E.g. a 5% strain = 0.05.
TAP 2282: Hooke's law and the Young modulus
Student activity:Studying data
It is helpful if students can learn to find their way around tables of material properties. Give your students a table and ask them to find values of the Young modulus. Note that values are often given in GPa (= 10^{9} Pa).
Some interesting values of E


Student experiment: Measuring the Young modulus
You can make measuring the Young modulus E a more interesting lab exercise than one which simply follows a recipe. Ask students to identify the quantities to be measured, how they might be measured, and so on. At the end, you could show the standard version of this experiment (with Vernier scale etc.) and point out how the problems have been minimized.
What needs to be measured? Look at the definition: we need to measure load (easy), crosssectional area A, original length x _{0} (so make it reasonably long), and extension Δ x.
Problems? Original length – what does this correspond to for a particular experimental set up? Crosssectional area: introduce the use of micrometer and/or vernier callipers. Is the sample uniform? If sample gets longer, won’t it get thinner? Extension – won’t it be quite small?
Should the sample be arranged vertically or horizontally?
Divide the class up into pairs and brainstorm possible methods of measuring the quantities above, including the pros and cons of their methods.
Some possibilities for measuring Δ x:
Method  Pros  Cons 
attach a pointers to the wire  measures Δ x directly  may affect the sample; only moves a small distance 
attach a pointer to the load  measures Δ x directly, does not effect the sample  only moves a small distance 
attach a pulley wheel  ‘amplifies’ the Δ x  need to convert angular measure to linear measure, introduces friction 
attach a pointer to the pulley wheel  ‘amplifies’ the Δ x even more  need to convert angular measure to linear measure, introduces friction 
exploit an optical level  a ‘frictionless’ pointer, ‘amplifies’ the Δ x even more  need to convert angular measure to linear measure, more tricky to setup? 
illuminate the pointer etc to produce a magnified shadow of the movement  Easy to see movement  Need to calculate magnification. Can be knocked out of place. 
use a lever system to amplify or diminish the load and provide a pointer  useful for more delicate or stiff samples; can use smaller loads  fixing the sample so it doesn’t ‘slip’, need to convert angular measure to linear measure 
Different groups could try the different ideas they come up with. Depending upon the time available, it may be worth having some of the ideas already set up.
Give different groups different materials, cut to different sizes, for example: metal wires (copper, manganin, constantan etc), nylon (fishing line), human hair (attach in a loop using Sellotape), rubber. Note that in the set up above, the sample is at an angle to the ruler – a source of systematic error.
Safety
Students should wear eye protection, provide safe landing for the load should sample break, e.g. a box containing old cloth. For the horizontal set up: ‘bridges’ over the sample to trap the flying ends, should the sample snap.
Good experimental practice: measure extension when adding to the load and when unloading, to check for any plastic behaviour.
TAP 2284: Measuring the stiffness of a material
TAP 2285: Stress–strain graph for mild steel
Information about the use of precision instruments (micrometer screw gauge, Vernier callipers and Vernier microscope).
TAP 2286: Measure for measure
Student experiment: An alternative approach using a cantilever
An alternative approach to measuring the Young modulus is to bend a cantilever. (Potential engineering students will benefit greatly from this.)
For samples too stiff to extend easily (e.g. wooden or plastic rulers, spaghetti, glass fibres) the deflection y of a cantilever is often quite easy to measure and is directly related to its Young modulus E.
If the weight of the cantilever itself is mg, and the added load is Mg and L is the length of the cantilever (the distance from where the cantilever is supported to where the load is applied):
For a rectangular cross section, dimension in the direction of the load = d, other dimension = b y = 4 (Mg + 5mg/16) L ^{3} E b d^{3} (for square crosssection d = b)  For a circular crosssection radius r
y = 4 (Mg + 5mg/16) L ^{3} 3 π r ^{4} E

Discussion: Comparing experimental approaches
Finish with a short plenary session to compare the pros and cons of the different experimental approaches.
Student questions: Involving the Young modulus
Questions involving stress, strain and the Young modulus, including datahandling.
TAP 2287: Calculations on stress, strain and the Young modulus
TAP 2288: Stress, strain and the Young modulus
Download Word version of Episode 228 (506 KB)
^ To the top ^