Tap 128- 2: How many bulbs will a capacitor light?

By charging a 10 000 μ F capacitor to different voltages and discharging into various numbers of small light bulbs, suggest a relationship between capacitor voltage and the energy it stores.

Requirements

- ✓ 10 000 μF electrolytic capacitor
- Locktronics baseboard or similar
- \checkmark m.e.s. bulb holders (9)
- m.e.s. 2.5 V 0.3A bulbs (9 must be well matched)
- ✓ voltmeter (f.s.d. 10 V)
- ✓ I.t. variable voltage power supply or a set of 1.5 V cells to reach 9 V.
- ✓ connecting leads

Set up

Connect up the circuit shown in the diagram below so that initially the 10 000 μF capacitor is being charged to 3 V.

Now discharge the capacitor into the single light bulb and observe its brightness.

This is to be your 'standard illumination' which to compare the others with.

Charge the capacitor to 6 V and discharge into the four bulbs as shown below.

Observe the brightness of the bulbs. Are they lit about the same as the first?

Finally, charge the capacitor to 9 V and discharge into the nine bulbs as shown in the diagram below.

Observe the brightness of these bulbs compared with your initial standard brightness.

Suggest a relationship between the capacitor voltage and the energy stored.

Practical advice

You will need more than nine m.e.s. bulbs in order to get nine that are well matched.

To test for a match, connect all the bulbs in parallel on a board to a supply voltage of 2.5 V and select until all are of equal brightness.

Alternatively measure the m.e.s. bulb resistance with a multimeter and select bulbs with the same resistance.

External references

This activity is taken from Salters Horners Advanced Physics, A2, Medium is the Message, MDM Activity 23