> *,)@ 8bjbjFF .@,,8888888Lpppp4DLf$<R?Q8@@@?88BBB@88B@BB!88m+rpv90A,@t@mLL8888@8m 0"B<X??LL$p,LLpTAP 528-2: Fission in a nuclear reactor how the mass changes
Some rather harder questions
These extended questions will test your ability to deal with calculations involving the physics of nuclear fission.
Use the following conversions and values for some of the questions:
1 eV = 1.6 10 19 J
1 atomic mass unit = 1.66 10 27 kg
c = 3 108 m s 1
ParticleMass (u) EMBED Equation.3235.043 94EMBED Equation.31.007 825EMBED Equation.33.016 030EMBED Equation.31.008 665
Try these
Magnox power stations produce about 20 TW h of electrical energy in the UK every year by fission of uranium. (This energy supplies roughly the electrical needs of Greater London.)
1 The overall efficiency of the process that converts the energy for heating released in the fission to the final electrical product is 40%. How much energy, in joules, is produced each second in the companys reactors?
2 Each fission releases about 200 MeV of energy. How many atoms of EMBED Equation.3 need to fission in each second to produce the heating energy you calculated in question 1?
3 What was the mass of these atoms before they underwent fission?
4 What is the total mass change due to fission in Magnox reactors each second?
In the pressurised water reactor (PWR) the fuel rods do not contain pureEMBED Equation.3. The uranium comes from mined ore that contains a mixture of EMBED Equation.3 andEMBED Equation.3. The fuel delivered to the reactor contains 0.7% ofEMBED Equation.3. The fuel rod stays in the reactor for about 3 years and is then removed to allow reprocessing.
This time consider just one reactor with an output of 1 GW.
5 Calculate the number of uranium nuclei disintegrating every second.
6 Calculate the mass of EMBED Equation.3 that undergoes fission every second.
7 Estimate the mass of EMBED Equation.3 required in the core for a 3 year cycle.
8 Estimate the total mass of both uranium isotopes required in the core for a 3 year cycle.
9 Is your estimate in question 8 likely to be an upper or a lower limit?
Hints
1 Remember the meaning of the term watt-hour. It corresponds to the amount of energy delivered at a rate of 1 joule per second for 1 hour. Do not forget to include the efficiency in your calculation.
2 Convert to J from MeV.
3 Use the nucleon number of the uranium and the conversion from atomic mass units to kilograms.
4 Use DE = Dmc2 to calculate this.
7 The information indicates that one-third of the fuel needs to be removed for reprocessing every year. Your answer to question 6 can be multiplied up to give the fuel usage in 1 year. This is one-third of the total.
8 The answer to question 7 represents the fuel used, and this is 3% of all the uranium (both isotopes). Hence the total mass.
Practical advice
These questions revise basic conversions between electron volts and joules and atomic mass units and kilograms. Students will need to be familiar with gigawatts (GW) and terawatts (TW) in powers of 10. The questions could be extended either verbally or in writing to ask students about the volume of uranium inside the core and about the equivalent volumes of coal or oil that might be required in a conventional power station. For example, 1 megatonne of coal is equivalent to
29 x 1015 J, 1 megatonne of oil is equivalent to 42 x 1015 J.
Social and human context
The questions provide an opportunity for debate about fission power generation.
Answers and worked solutions
1. energy = ((20
J
L
R
X
b
d
n
p
v
x
468XZ\^tvxȻȬȻȒȻxmȻjhJhuUjnF
hJhuUaJjhJhuUjnF
hJhuUaJjhJhuUjnF
hJhuUaJjhJhuUaJhJhuaJhJhu6]hJhuCJEH
aJhJhuOJQJ^JhuhJhu*?@^
b
skkd$$IfT40 0aT $Ifgdu
&Fgdugdugdugdu8
4kkd$$IfT40 0aT$$Ifa$gdu46`t$$Ifa$gdukkd$$IfT40 0aTtv$$Ifa$gdukkd$$IfT40 0aTx2
Q
"#$%cdtuɺɞɺuhɺL6jbG
huB*OJPJQJUV^JnH phtH jhu$PhuEHU6jbG
huB*OJPJQJUV^JnH phtH j
hu$PhuEHU6jbG
huB*OJPJQJUV^JnH phtH jhJhuUhfhJhujhJhuUaJjhJhuUjnF
hJhuUaJhJhuaJx
y
z
{
/012t|0^`0gdfgdugdukkd
$$IfT40 0aTtuvw9vwjklm0^`0gdfgduuvw{|,-=>ķreI6jbG
huB*OJPJQJUV^JnH phtH jhu$PhuEHU6jbG
huB*OJPJQJUV^JnH phtH jhu$PhuEHU6jybG
huB*OJPJQJUV^JnH phtH jhu$PhuEHU6jbG
huB*OJPJQJUV^JnH phtH hJhujhJhuUjhu$PhuEHU>?@HIJKjqQT
dOUghjklmoq2222,2022242D2F2L2N2`2b2d2f2z2|22222222222333öhJhuCJEH
aJhJhuOJQJ^JUhJhuH*hJhuOJQJhfhuhJhujhJhuUj-hu$PhuEHUB`<vwh/2d33 4445`gdu^gdf0^`0gdfgdugdu 1012 Wh 3600 J W h 1) / (3.16 107)) (100 / 40) = 5.7 1019 J every second.
2. number of atoms = (5.7 1019 J) / (200 106 eV 1.6 10 19 JeV 1) = 1.8 1026 atoms.
3. mass per second = 1.8 1026 s 1 235.04394 u 1.66 10 27 kg u 1 =
7.0 10 5 kg s 1
4. mass change = (5.7 1019 J s 1)/ ((3 108)2 kg s 1) = about 5 g
5. disintegrations per second =
((1 1019 J s 1)/ (200 106 MeV 1.6 10 19 J eV 1)) (100/40) = 7.8 1019s 1
6. mass per second = 7.8 1026 s 1 235.04394 u 1.66 10 27 kg u 1 =
3.0 10 5 kg s 1
7. mass = 3.0 10 5 kg s 1 3 years 3.2 107 sy 1 = 2900 kg
8. mass = 2800 kg (100/0.7) = 400 000 kg
9. Lower limit.
External reference
This activity is taken from Advancing Physics chapter 18, 270S
3
33 3&3,34383H3J3P3T33333333333333444444L4N4T4X4`4d4r4t4z4|4~44444445
555 5&5(5>5@5F5L5V5Z555555555555566"6&6*6,6.6>6B6H6huhfCJEH
aJhJhuOJQJ^JhJhuhJhuCJEH
aJR5.6R66,7^7`7788gdu`gdfgdu H6J6L6P6b6n6v6z66666666688hJhuCJEH
aJhJhuhu,1h. A!"#$%$$If!vh55#v:V405/4aTDd
S0
#A2hmvՐ]}D`!<mvՐ]} XJ
xcdd`` @c112BYL%bL0Yn&&f! KA?Hj5rC0&dT20]?c&,``abPp,L-_ߗ\,@9]j mxJy
ql0L26MtqF\Ppv0o8+KRs҂A6h`;;H$$If!vh55#v:V40,5/4aTDd
S0
#A2^8/-D{) R8:b`!28/-D{) R8۬ HXJxcdd`` @c112BYL%bL0Yn&B@?6 75bnĒʂT+~3v,L
E9@>Br(T0zTBS˼:.d@|y``s
+!0>7\`E#F&&\miAh`iHH$$If!vh55#v:V40,5/4aTDd
T0
#A2c]
Jo?`!7]
Jo Kxcdd`` @c112BYL%bL0Yn&LB@?6 7j䆪aM,,He`7Ӂ`0LYĠXd/dzm: g`b`Usi#ƛ 'yBS˼JN @FB-|T.o>[;FLLJ%ji] @4
nFf~7K'$$If!vh55#v:V40,5/4aTDd
S0
#A2b ӧG/M>c`!6 ӧG/M HXJxcdd`` @c112BYL%bL0Yn&B@?6 75bnĒʂT+~3v,L
E9@R.o >PNHq50ciͫy!#c~`kX _`4
*l
/`p121)W2'=cgbal_ v3209LT$$If!vh55#v:V40,5/4aTDd
Tb
c$A??3"`?2b**KY2m>
`!6**KY2m XJxcdd`` @c112BYL%bpu=`!5
l.eݒL> XJxcdd`` @c112B
"#$%&'(;+./021354678:9@A<=>?QCDEFGHIJKLMNOPRoot Entry( F?r-Data
!EWordDocument'.@ObjectPool* @)r?r_1204707984F@)r@)rOle
CompObjfObjInfo #&)+,-./01345679
FMicrosoft Equation 3.0DS EquationEquation.39q,ĳ
,92235
U
FMicrosoft Equation 3.0DS EqEquation Native H_1204707974F@)r@)rOle
CompObj
fuationEquation.39q,ܙ
,92235
U
FMicrosoft Equation 3.0DS EquationEquation.39qObjInfo
Equation Native
H_1204707969F@)r@)rOle
CompObj
fObjInfoEquation Native H_1204707971F@)r@)r, d
,92238
U
FMicrosoft Equation 3.0DS EquationEquation.39q,d
,92235
UOle
CompObjfObjInfoEquation Native H_1204707961F@)r@)rOle
CompObjfObjInfo
FMicrosoft Equation 3.0DS EquationEquation.39q,4
,92235
U
FMicrosoft Equation 3.0DS EqEquation Native H_1204707995"F+r+rOle
CompObj fuationEquation.39q,0ĳ
,92235
U
FMicrosoft Equation 3.0DS EquationEquation.39qObjInfo!!Equation Native "H_1204708001$F+r+rOle
$CompObj#%%fObjInfo&'Equation Native (H1TableBP,ĳ
,92235
UOh+'0$ 0<
Xd
p|?TAP 528-2: Fission in a nuclear reactor how the mass changesAP mxgxgxgNormal.dotFmxg2gMicrosoft WoYL%bpu1|l'RODd
Tb
c$A ??3"`?2aqSM.*=B`!5qSM.* XJxcdd`` @c112BYL%bpuY`!69))3g: XJxcdd`` @c112BYL%bpu͔>q`!6BzA>͔ XJxcdd`` @c112BYL%bpu3H68
4tt588}4EGO`b:::::::::::BM180061JJ\J̯RRTT?*urn:schemas-microsoft-com:office:smarttagsstocktickerB*urn:schemas-microsoft-com:office:smarttagscountry-region9*urn:schemas-microsoft-com:office:smarttagsplace
OQ`c^art$&
!'"16:33333333ttw w
Z
Z
tt<fh`h^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@@^@`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hH<f fuhr|}@00L##
@@@
@@@@,@@2UnknownGz Times New Roman5Symbol3&z Arial3z Times?5 z Courier New;Wingdings"qh{C&C&KK!243qH)?u>TAP 528-2: Fission in a nuclear reactor how the mass changesmxgmxg
FMicrosoft Word Document
MSWordDocWord.Document.89q