> !@ `(bjbjFF .*,,`8888888L0
0
0
0
L
<L
p$qRn
98
88A
66688666886
/r0
F6VW
0
61 16LL8888186 6
LL0
LL0
TAP 528- 4: Fusion questions
Nuclear fusion is the process in which nuclei combine to give heavier elements. In one fusion reaction, two atoms of deuterium (hydrogen-2) fuse together to give one atom of a helium isotope (helium-3) together with one other particle.
1. Write out a balanced equation for this fusion process and say what the fourth particle is?
2. Calculate the energy release in this equation. Values you need are in the table.
ParticleMass (u)EMBED Equation.31.008 665EMBED Equation.32.014 102EMBED Equation.33.016 050EMBED Equation.3
3.016 030
Another possible fusion process is represented by:
EMBED Equation.3
(the formation of hydrogen-3, tritium, by a nucleus of deuterium absorbing a neutron). This equation is certainly balanced. But can it occur in practice?
3. Calculate the change in mass in this reaction.
4. Is the reaction possible or not?
Practical advice
These questions revise basic conversions between electron volts and joules and atomic mass units and kilograms. Students will need to be familiar with gigawatts (GW) and terawatts (TW) in powers of 10. The questions could be extended either verbally or in writing to ask students about the volume of deuterium inside the core and about the equivalent volumes of coal or oil that might be required in a conventional power station. For example, 1 megatonne of coal is equivalent to
29 x 1015 J, 1 megatonne of oil is equivalent to 42 x 1015 J.
Social and human context
The questions provide an opportunity for debate about fusion power generation.
Answers and worked solutions
1. EMBED Equation.3
2. mass of two hydrogen-2 = 2 2.014102 u = 4.028204 u
mass of helium-3 plus neutron = 3.016030 u + 1.008665 u = 4.024695 u
Dm = 4.028204 u 4.024695 u = 0.003509 u
DE = 0.003509 u 931.3 MeV u 1 = 3.27 MeV
3. mass of hydrogen-2 plus neutron = 2.014102 u + 1.008665 u = 3.022767
Dm =3.022767 3.016050 u = 0.006 717 u.
4. The reaction can occur with a release DE = 0.006 717 u 931.3 MeV u 1
l m
%
&
'
(
3
4
5
E
F
G
H
I
T
U
춫윑wc&jhJhjB*CJUaJphjIhJhjUjrF
hJhjUaJjhJhjUjrF
hJhjUaJj+hJhjUjrF
hJhjUaJjhJhjUjrF
hJhjUaJjhJhjUaJhJhjaJhJhjhj&
i j k l $$Ifa$gdj0^`0gdgdjgdj`( $$Ifa$gdjkkd$$IfT40 0aT
$$Ifa$gdjkkd$$IfT40 0aT
)
3
$$Ifa$gdjkkd$$IfT40 0aT3
4
I
J
T
$$Ifa$gdjkkd$$IfT40 0aTT
U
V
W
;<opqrgdjkkd>
$$IfT40 0aT
<>rs
Jűzo^ hu$PhjOJQJ^JmHsHhu$PhjmHsHj
hJhjUjsF
hJhjUVjhJhjUhJhjH*hjhJhj&jhJhjB*CJUaJph&j
hJhjB*CJUaJph,jrF
hJhjB*CJUVaJphhJhjB*CJaJph!
jlH*jl(
( (_(`(gdjgdj*,.0fjln(_(`(ڸڴUhJhjCJEH
aJhJhj6]hJhjhj hu$PhjCJEH
aJmHsH hu$PhjOJQJ^JmHsHhu$PhjmHsHhu$Phj6]mHsHhJhjOJQJ^J= 6.26 MeV
External reference
This activity is taken from Advancing Physics chapter 18, 250S
,1h. A!"#$%$$If!vh55#v:V40,5/4aTDd
S>
#A"2a6=mN_PN=2`!56=mN_PN Hxcdd`` @c112BYL%bL0Yn&B@?6 75bnĒʂT+~3v,L
E9@<7Br(T1UBS˼\\BVB|J.o>[;FLLJ%Bi] @4
nFf~I$$If!vh55#v:V40,5/4aTDd
?S>
#A"2a=g胨NѱCSA=o2`!5=g胨NѱCSA Hxcdd`` @c112BYL%bL0Yn&&&! KA?H17T
obIFHeA*C;a&Ǣ {7Br(To2zTBS
#A"2a[;FLLJ%u*
#A"2c]
Jo?2`!7]
Jo Kxcdd`` @c112BYL%bL0Yn&LB@?6 7j䆪aM,,He`7Ӂ`0LYĠXd/dzm: g`b`Usi#ƛ 'yBS˼JN @FB-|T.o>[;FLLJ%ji] @4
nFf~7K'$$If!vh55#v:V40,5/4aT>Dd
'S>
#A"2䑄d2
s`!䑄d2
t@ XHNxcdd``bd``baV d,FYzP1C&,7\ Adb@P5<%!`Wf: X2sM\KߖA|..P5p#F}vVJ_σo2@!)e2} >>F0n6P{.0
+a3|%]FpPz,I9pIC4p> #l! KJ.hpc8``㚑I)$58wSv.F} F#f~OjTDd
S>
#A"2UM}PNHq50qU1 'z,(>~Ŏl?L-.P{.0
Ra;@|c0._ˌ̿8ټy,I9pAGpQ #
Ly.hrc|8``
#RpeqIj.C*